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A novel scheme has been developed for data reconstruction within a Godunov-
type method for solving the shallow-water equations with source terms. In contrast
to conventional data reconstruction methods based on conservative variables, the
water surface level is chosen as the basis for data reconstruction. This provides
accurate values of the conservative variables at cell interfaces so that the fluxes can
be accurately calculated with a Riemann solver. The main advantages are: (1) a
simple centered discretization is used for the source terms; (2) the scheme is no
more complicated than the conventional method for the homogeneous terms; (3)
small perturbations in the water surface elevation can be accurately predicted; and
(4) the method is generally suitable for both steady and unsteady shallow-water
problems. The accuracy of the scheme has been verified by recourse to both steady
and unsteady flow problems. Excellent agreement has been obtained between the
numerical predictions and analytical solutions. The results indicate that the new
scheme is accurate, simple, efficient, and robuss.2001 Academic Press

Key Words:source terms; shallow-water equations; data reconstruction; high-
resolution method; Godunov method; MUSCL scheme.

1. INTRODUCTION

The shallow-water equations have wide applications in ocean and hydraulic enginee
tidal flows in estuary and coastal water regions; bore wave propagation, the statiol
hydraulic jump; and river, reservoir, and open channel flows, among others. Researc
methods of solution of the shallow-water equations has received considerable attel
in the past two decades. A number of finite-volume schemes of the Godunov type |
been developed recently to solve the inviscid form of the shallow-water equations [1-
However, the inclusion of source terms, e.g., those terms relevant to bed topography an
shear stress, is often necessary to permit the modeling of realistic problems. For exar
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2 ZHOU ET AL.

modeling tidal flows in estuary and coastal water regions usually requires consideratio
the bed topography. Applications of the inviscid form of the shallow-water equations with
source terms are largely limited to shock wave, bore wave, and dam break scenarios.
shallow-water equations can be shown to fail to predict a hydraulic jump accurately if
bed shear stress terms are neglected. A simple and direct method for solving the eque
with source terms is a fractional step method [5], in which the inhomogeneous form of
equations is split into sets of equations, i.e., a homogeneous equation and a set of ord
differential equations that are solved individually during a computation as part of a seque
of term-by-term split operators. This method, however, provides relatively poor solutions
guasi-steady or steady problems [6]. Thus, the study of methods for solving the full shall
water equations continues to receive attention. Recently, various workers have devel
new Godunov-type methods for the shallow water equations with source terms. For exan
in 1994, Bermudez andaZquez [7] proposed an upwind method for the treatment of tt
bed slope term for an unsteady flow problem. This method significantly improved f
accuracy of the numerical solution compared with earlier methods. Laequé&z-Cenati

[8] applied the same idea to solve a wider range of flow problems including steady or
The main drawback of this method is its complexity. LeVeque [6] developed a treatment
the bed slope source terms which balanced the source terms and flux gradients. This m
is suitable for quasi-steady problems but is reported to be less successful when appli
calculate steady transcritical flow with a shock.

In this paper, we propose the surface gradient method (SGM)—a general schem
treating source terms in the shallow-water equations based on an accurate reconstruct
the conservative variables at cell interfaces. The fluxes at cell faces can then be accut
calculated with a Riemann solver without the need for term-by-term splitting. The stand
Godunov-type method applied to the homogeneous form of the equations is recover
the source terms are neglected. The SGM is applied to steady and unsteady shallow:
problems involving bed slope terms to demonstrate both the accuracy and the applical
of the SGM.

2. 2D SHALLOW-WATER EQUATIONS

The 2D shallow-water equations with source terms may be written in vector form as

ou

— 4+V-F=S5, 1

T 1)
whereU is the vector of conserved variablésis the flux vector functionS is the vector

of source terms, andl = iaiX +] aly is the gradient operatdd andF are

¢ PV
U=|gul|, F=|[¢ouv+ig? 2)
pv pvV + %qﬁzj
andS= S, + Sy with
0
S=|9% |, s=|-mx]. @3)
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FIG. 1. Definition sketch for bed topography.

where¢ = gh is the geopotentialy = 9.81 m/< is the acceleration due to gravity;is
the water densityh is the water depthH is the partial depth between a fixed referenc
level and the bed surface (see definition sketch in Fig. 1 for the 1D case)dv are
thex andy components of flow velocity, respectivel;is the velocity vector defined by
V = ui + vj; S is the bed slope term; arfs; is the bed shear stress term, witandy
components defined by depth-averaged velocities

Tix = pCrUyV/ U2 4+ 12, Tty = pCrvV u? 4 02, (4)

whereCj; is the bed friction coefficient, which may either be constant or estimated frc
Ct = g/C2?, whereC;, is the Chezy constant.

3. THE SURFACE GRADIENT METHOD (SGM)

An accurate data reconstruction scheme is proposed for the 2D shallow-water equat
For clarity, the following description will be restricted to thiirection. The same procedure
can similarly be applied to thg direction and need not be repeated here.

To solve the continuity equation, fluxes based on the conservative variables are req
at the cell interface. In higher order accurate Godunov-type methods, the values of
conservative variables within a cell are calculated using a reconstruction method base
the cell center data. Usually, a piecewise linear reconstruction is used, leading to a se
order scheme, e.g., fgrwithin the celli (Fig. 1)

¢ =¢ + (X —X)d¢i, (%)

whered¢; is the gradient o calculated by

(6)

561 = G(¢i+1—¢i b —(bi—l)’

Xigr — X X — Xi—1
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in which G is a slope limiter which is used to avoid generating spurious oscillations in t
reconstructed data at the cell interfaces [5]. The slope limiter may take one of several fol

e minmod Limiter

G(a, b) = max[0, min(a, b)] (7
e van Leer Limiter
alb| + |alb
G@aby=—— 8
@b la| + |b] (®)
e superbee Limiter
G(a, b) = smax[0, min(2|b|, sa), min(|b|, 2sa)] (9)

with s = sgn(b).

The values ofp on the left and right of the cell interface € %) are

1 1
Sy =1t 5Axadtia, Gy =g — SAXSH, (10)
whereAx; = Xyl =% 1 and
AXi AXi
Xi_1=X —7', X1 =xi+7'. (11)

It is clear that the gradient decided with Eq. (6) for the geopotengials effectively
the gradient in depthh, sincep = gh. This method of data reconstruction, suitable for the
homogeneous, or inviscid, form of the equations, is referred to hereafter as the depth gra
method (DGM). However, since we wish to include the effects of bed slope, the water de
at a cell interface will be influenced by the bed topography, in addition to variations
the free surface with time. In general, no matter what higher order accurate reconstruc
method for water depth is applied, the depth at the cell interface cannot accurately
determined by this method. This is because the depth gradient fails to reproduce the
variation in water depth. Hence, errors introduced by the depth gradient method give ris
inaccurate fluxes which in turn produce inaccurate solutions. This can be clearly seen
Fig. 1. Values of water depth reconstructed using Eg. (10) are no longer exact at the
interface even at the start of the computation. Such errors will be carried forward throl
the entire computation and are responsible for inaccuracies in the solution when bed <
source terms are included. For this reason many high-resolution Godunov-type metl
fail to solve the shallow-water equations accurately when a centered discretization is |
for the bed slope terms.

Since an accurate value of the conservative varigloknnot be obtained at a cell interface
with the depth gradient method, a new reconstruction scheme, the surface gradient me
(SGM), is proposed. The water surface leyéi, t) is defined as

n(x,t) = h(x, t) + zp(x) (12)

(see Fig. 1).
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Following a similar approach, if a piecewise linear reconstruction is useq fa.,
n=n+ (X—X)én, (13)

the water levels at the left and right of the cell interfaice(%) are given by

1 1
N1 =i+ SAXC8nii, i =1 — SAX S, (14)
3 2 2 2
whereén; is the gradient ofy within celli (Fig. 1), which can be determined in exactly the
same manner akp; .
The values ob at the left and right of the cell interface € %) are then calculated as

¢.L

1
2

= g(ﬂiL_% - Zbi—%)’ ¢iR_% = g(ﬁiR_% - Zbi—%)- (15)

As can be seen from Egs. (12)—(15), accurate values of the conservative varettiiee
cell interface can be determined with the surface gradient method, thus eliminating de
related errors in computations of the fluxes at cell interfaces with the Riemann solver.
SGM is the same as the DGM in the absence of bed slope terms. It involves an equiv:
level of computation effort to the DGM. When using the surface gradient method, the |
slope source term should be discretized with a centered scheme, as discussed in de
Section 5. This leads to a particularly simple and efficient implementation of the methc

The new data reconstruction scheme remains fully conservative. This can be show
follows: the depth within the cellis

h(x,t) = n(X,t) = z5(X) = 7i + (X = X)dni — Zp(X). (16)
Integration of Eq. (16) over the intervatiL%, xH%) gives
Xl X4l X, 1 Xl
/ “hix,t)dx = / i dx+/ (X — %) 87 dx—/ () dx,  (17)
X_1 X_1 Xi*% Xi*%
2 2
which can be simplified to

1
AX

Xi+% 1 Xi+%
/Xil h(x,t)dx =n; — A /Xi1 Zn(X) dX. (18)

If the bed topography is defined at cell interfaces and a piecewise linear profijgaighin
the cell is assumed,, at the cell center is then expressed exactly as

Zoi+1 + Zpi—}

Zyi = 5

(19)
The second term on the right-hand side of Eq. (18) can be accurately calculated; i.e.,

Xi

%0 A
Zb(X)dX: (ZbH—% +22bi +Zbi—%) 4
X_1

i-3

= Zpn AX. (20)
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Substitution of Eq. (20) into Eq. (18) results in
! /X'+%h(x tydx = n — 2z = h; (21)
AX, - s =i bi = Ni,

which shows that the depth at cell ceriteyretained as the integral average over the interv:
(Xi—1/2, Xi+1/2), consistent with the conventional depth gradient method, confirming that t
scheme is conservative [9].

4. IMPLEMENTATION WITHIN A GODUNOV-TYPE METHOD

The surface gradient method can be incorporated into any Godunov-type method w
requires data reconstruction. Here, the MUSCL—Hancock finite-volume method [10
applied to the solution of Eq. (1). The method is a second-order-accurate, high-resolu
upwind scheme of the Godunov type. It consists of two steps: a predictor step and a corr
step.

In the predictor step, a nonconservative approach is used to determine the interme
values over a half time step,

m=1

nal at [ X
(V)" = (ALY} — = (Z F(Um)" - Lm — (AS)] ) : (22)

whereA is the cell aredl, ,, is the cell side vector defined as the cell side length multiplie
by the outward pointing unit normal vector, aMi= 4 is the number of sides of the cell.
The flux vector=(Uy,) is evaluated at each cell faoefollowing data reconstruction based
on neighboring cell center data. For the continuity equation, the SGM is used,; i.e.,
values of¢ at the cell interfaces (— %j) and { + %j) for the celli; under consideration
are expressed using Eq. (15) as

Gz =9(-1) —Zizj)s  Gieyy = 9(Miiy) — Zoigyj) (23)
where
1 1
Miogj =M = 5 AN Mgy = i S A S (24)

For the momentum equations, a piecewise linear reconstruction is used to calculate
values of¢u and ¢v at cell interfaces. For exampleéu and ¢v at the cell interfaces
(i — %j) and { + %j) can be calculated as

G35 = @U; — A% 5PUi, (25)

@435 = GO + 5 A% 5@ (26)
and

(@v)i_1j = (Pv)ij — %Axija(‘f’v)xij, (27)

1
@V)iy1j = (Pv)ij + EAXij5(¢U)xija (28)
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FIG. 2. HLL approximate Riemann solver.

whered (pu)xij ands(¢v)yij are the gradients apu and¢v in the x direction within the
cellij, respectively. They are calculated in the same wajas

In the corrector step, a fully conservative solution over a full time step is achieved
solving a series of local Riemann problems based on data from the predictor step,

M 1
(AU = (AU)]} — At (Z F(UL, UR)™ 2 Ly — (AS){}*?), (29)

m=1

where the flux vectoF (U, UR) is calculated by solving a local Riemann problem at eac
cell interface UL, andUR are vectors of the conservative variables at the left and right sid
of cell interfacem, defined by expressions such as Eq. (15))and expressions similar to

Egs. (25), (26) and Egs. (27), (28) fou and¢wv, respectively. Although different Riemann
solvers may be used f&iUL,, UR), the HLL approximate Riemann solver [11] is found to
be simpler to implement and more robust in practice. Hence, it is used in the present s
In the HLL Riemann solver, the Riemann problem is simplified as three constant stz
separated by two wavess andsg between which it is the star region as shown in Fig. 2
The flux at the cell interface+ % is determined by

F(Un) if L >0
F(Up, UR) = ¢ F(UL,UR) ifs <0< (30)
F(UR) if sz <0,

where

%F(UR) — s F(UR) +ss=(UR — Up)

F*(Up. Un) = —y (31)
with wave speeds. andsg defined by
s = min(V' - Ny — V8L, us — \/os). (32)

Sk = Max(VR - Ny 4+ VR, Us + 1/s) (33)
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in which us andgs are estimated as [12]

s = SOV VR) - /3T — /3R, (34
VR VR (VR VR g
V= + TR (35)

andny, is the normalized side vector for cell faoe
It may be noted that the expressions (32) and (33) for a dry bed problem are modifie
[13]

s =V nn—+vet, ss=V'-nn+2y¢t (rightdry bed) (36)
and
s =VRonn—2VeR,  ss=VR.nn+ ¢R (leftdry bed) (37)

Although the SGM proposed in Section 3 is generally suitable for both uniform a
nonuniform meshes, a uniform Cartesian mesh is used here to maintain the same com
tional conditions as reported in the literature. The time gtéjis calculated at the start of
each time step by

At = C; min(Aty, Aty), (38)
where

. . Ay
Aty = min Aty = min

—_—, — (39)
UUij + /i Ivij + /&

in which C; is the Courant number (& C; < 1). To test the robustness of the scheme, thre
values, 0.3, 0.65, and 1, were used@iin all the numerical computations presented here
and no stability problem was encountered.

5. CONSERVATIVE PROPERTY AND SOURCE TERMS

5.1. Conservative Property

It is well known that for a stationary flow problem,
h=H, V =0, (40)

there are nonvanishing terms in the momentum equations owing to bed topography, i.

O (1o _ 8H 915y oH
ax(2¢ ) =9¢ ax’ 8y<2¢ > =9 y (41)

If a numerical scheme can replicate the exact solution to the stationary flow problem (
the scheme is said to satisfy the exaqtroperty [7, 14].
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DerINITION 5.1. Z-property: (i) a numerical scheme provides the exact values of
variable in the flow domain to the stationary cése H, V = 0; (ii) the scheme satisfies
the exactC-property when a centered discretiztion is used for source terms.

ProOPOSITIONS.1. The numerical scheme proposed in Sec8eatisfies theZ-property.

Proof. Without loss of generality, only the one-dimensional situation is considered he
The proof for two-dimensional problems can be formulated in an analogous manner.
the initial stationary problem (40), the wave speeds from Eqs. (32) and (33) are

s =-vgh  s=./gh (42)

In the predictor stepthex component of numerical flu¥y, is

[p(P+30)]is — le(WP+30)]i s 1 ,(hps+hy) (s —hiy
Fx — 2 Jr2AX 2 2 _ 592( +3 ZZE( +3 2) (43)

becausel = 0 andg = gh.

It should be noted that the water level is constant under the initial conditienH
andu = 0. Data reconstruction with the surface gradient method provides zero grad
(6n = 0) for the water level in the whole domain; hence the method gives the exact val
of depthh or ¢ in the whole domain. According to Egs. (23) and (24),

1
hi i =mn_1—-2y 1=n— EAXfS’?i — Zyi_1 (44)
1
hit=m1—Zyr=ni+ 5 AXoni = Zyiy 1. (45)
we have
(h 1+ h'_l) (Zb' 1+ Zb'_l) (Zb' 1 +Zb'_l)
AL S L 5 I L B 2 5 T2 = (g — Zoi) + 2 — 2] 5 20 (46)

Noting that(n, — z,j) = h; andz,; — (Zi41/2 + Zbi_]_/g)/z = 0ifthe bed levek, is defined
at the cell interfaces, Eq. (46) becomes
h 1 +h_:
("“22'2> = h. (47)

Substitution of Eq. (47) into Eq. (43) results in

(48)

1 h

HH’%_H 2 2 2
S<=g¢iT=ghiT=Fx (49)

becausér = H. This proves that the numerical scheme in the predictor step satisfies
exactC-property; hencé = H andu = 0 are preserved after the predictor step.
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In the corrector stepthe numerical flux at the right-hand interfa¢g, 1,» is defined by
Eq. (30),

_ [+ 50)11 s — s [8(0 + 50)11 s +as[@uR , - GUL,]
SR—S.

1+

. (50)

(NI

because. < 0 < sg.

Since up to this poinbh = H andu = 0 will have been maintained over the whole
domain,¢ can be obtained exactly with the surface gradient method and no discontint
in water depth will appear anywhere in the domain; ig. = ¢R at all the cell interfaces.
Substitution of the wave speeds (42) ang: 0 into the above equation gives

1 2 1 2
/9N 1ol + 5 /0N 1e
_ 271+5 271+5 — _¢2 ; (51)

i+3 Y
2 2 ghi+% 2

Similarly, we have

1
Fi_% = §¢i27%. (52)
The numerical flux is
1,2 1,2
Foa—Fo: 2929 1 ,(ha+hiog)(his—hisy)
FX = = = 7g s (53)
AX AX 2 AX

which has exactly the same form as Eq. (43) in the predictor step with the same in

conditions (40). It then follows that the corrector step also satisfies the Exaciperty.

The importance of a scheme satisfying thproperty has been demonstrated by Bermude

and Vazquez [7]. Againh = H andu = 0 are preserved after the corrector step.
Therefore, the numerical scheme satisfiesZhproperty. =

5.2. Discretization of Source Terms

As discussed in the previous section, no special treatment is needed for the discretiz
of the source terms when using the data reconstruction scheme described in Secti
In fact, a centered discretization is applied for the source terms to retain the conserv
property. For example, the bed slope term atigédl discretized as

oH
// 9¢8— dxdy= g¢ij(Hi+%j - Hp%j)Ay, (54)
AXAy X
which gives second-order accuracy.

6. VERIFICATION OF THE SCHEME

In this section, the proposed scheme is verified by solving some benchmark probl
including both steady and unsteady flows. The accuracy is demonstrated by comparin:
numerical solutions with analytical solutions, available numerical results, and experime
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data. To replicate the computational conditions reported in the literature, the bed s
source term is always taken into account and the bed friction terms are omitted except i
test problem in Section 6.5, which applies the method to the treatment of bed friction tet

6.1. Tidal Wave Flow

Tidal waves often have to be considered in coastal engineering. Here we consider the
problem that Bermudez anda¥quez [7] used for verification of an upwind discretization o
the bed slope source terms. This is a one-dimensional problem with bed topography de

by (Fig. 3)

40x . ax 1

whereL = 14,000 m is the channel length. The initial and boundary conditions are

h(x, 0) = H(x), (56)
u(x,0) =0 (57)
and
. 4 1
h(O,t) = H(O)+4—4sm[n (86AOO+ 2)} (58)
u(L,t) =0. (59)

Under these conditions, the tidal wave is relatively short and an asymptotic analyt
solution is derived by Bermudez and¥juez [7] as

. a1
h(X, H=HX +4— 4S|n|:7'[ (MO—F 5):| s (60)
 x-Lym a1
U D = S0t COS{” <86,400+ 2)] (61)

Without any further modifications, the 2D code can be directly applied to solve this i
flow problem. In the computations, 50 nodes witlk = 280 m, which is the same as that
by Bermudez and ®zquez, were used. Equations (56)—(59) were used as the initial
boundary conditions.

A comparison of the numerical results with the asymptotic analytical solutidr=at
755213 s is shown in Figs. 3 and 4. The agreement is excellent. This suggests that the
posed scheme is accurate for tidal flow problems. The present method provides predic
of the same accuracy as the scheme reported by Bermudezaqd&Z, which has a more
complex upwind discretisation of the bed slope source terms [7].

6.2. Tidal Wave Flow over an Irregular Bed

To validate the method to solve the flow over anirregular bed, we present here a tidal
over an irregular bed which was proposed at a workshop on dambreak wave simula
[15]. The same bed is also used bgafuez—Cenuti [8]. The bed topography is defined in
Table | and shown in Fig. 6.
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TABLE |

Bed Elevation at Pointx for Irregular Bed

X 0 50 100 150 250 300 350 400 425 435 450 475 500 505
Z, 0 0 2.5 5 5 3 5 5 7.5 8 9 9 9.1 9
x 530 550 565 575 600 650 700 750 800 820 900 950 1000 150
Z 9 6 55 55 5 4 3 3 2.3 2 1.2 04 0 0
70 . T T T
60 .
50 1
4o -
€
= /
30 ]
2o0f / ]
Numerical surface  ©
10+ Analytical surface R
Bed profile ------
0 z I 1 1 L
0 3000 6000 9000 12000
x(m)

FIG. 3. Tidal wave flow:

Comparison of water surfagex,

t).

0.2 T

018 |

0.16

0.14

0.12 |

01 f

u (m/s)

0.08 |
0.06 |
0.04

0.02

0 1

Numerical velocity — ©
Analytical velocity

0 3000

FIG. 4. Tidal wave flow: Comparison of velocity(x, t).

6000 9000 12000
x {m)
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0.06 T T T T T

0.05
0.04 [

0.03

u (m/s)

0.02

0.01

0 1 L L 1 1 5
0 250 500 750 1000 1250 1500

x (m)

FIG.5. Tidal wave flow over an irregular bed: Effect of mesh sizes.

The initial and boundary conditions are described by the same equations (56)—(59) a
problem in Section 6.1, but with

HO=16m L=1500m H(x) = H(0) — z(X). (62)

Under these conditions, the tidal wave is also relatively short and an asymptotic analy
solution is then given by the same equations, (60) and (61).

Inthe numerical computations, four mesh sizes, i.e., 50, 100, 150, and 200 cells, were
to achieve a grid-independent solution. Comparisons of the maximum positive velocitie
t =10,800 s are shown in Fig. 5, corresponding to the half-risen tidal flow. It is clearly s¢
from the figure that the results based on 200 cells with= 7.5 m can be regarded as a
grid-independent solution used for the following presentation.

To compare the numerical results with the asymptotic analytical solution, we cho
two results at = 10,800 s and = 32,400 s, which correspond to the half-risen tidal flow
with maximum positive velocities and to the half-ebb tidal flow with maximum negati
velocities. Figure 6 shows a comparison between the predicted surface and the anal
solution att =10,800 s. A comparison of velocities is depicted in Figs. 7 and 8. Excelle
agreement is obtained between the numerical and the analytical solutions. This cont
that the proposed scheme is also accurate for tidal flow over an irregular bed.

22 ; . ; . .
20
18 | :
16 | ;
14 | ;

12 F Numerical surface ° 3
10k Analytical surface
Bed profile ------

8 PR 3

1 (m)

........

0 250 500 750 000 1250 1500
x {m)

o N O
T

FIG. 6. Tidal wave flow over an irregular bed: Comparison of surfagest) att = 10,800 s.
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0.06 T T T T T
0.05 |- ]
0.04 | Numerical velocity o .

Analytical velocity
0.03 | 3

u (m/s)

0.02 3

0.01 | 7

0 i 1 1 1 1
0 250 500 750 1000 1250 1500

x {m)

FIG. 7. Tidal wave flow over an irregular bed: Comparison of velocity, t) att = 10,800 s.

6.3. Steady Flow over a Bump

A 1D steady flow in a 25-m-long channel with a bump defined by
0.2—-0.05x — 102 if8 <x <12
Zn(X) = . (63)
0 otherwise

is a classical test problem which has been used as a benchmark test case for num
methods at the workshop on dam-break wave simulations [15]. The problem was also |
by Vazquez-Cemati [8] to test their scheme with an upwind discretization for the bed sloj
source terms.

Depending on the initial and boundary conditions, the flow may be subcritical, transc
ical with or without a steady shock, or supercritical. Analytical solutions for the variot
cases are given by Goutal [15].

The global relative erroR is defined by

ht —hP=t\?
R= Z(‘hn') (64)

-0.01 + b

-0.02 + b

-0.038 7

u (m/s)

-0.04 Numerical velocity o 5
Analytical velocity

-0.05 b

(

_0.06 1 L L 1
0 250 500 750 1000 1250 1500

x (m)

FIG. 8. Tidal wave flow over an irregular bed: Comparison of velocity, t) att = 32,400 s.
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Relative error R

'8 1 L 1 1 Al
10
0 500 1000 1500 2000 2500 3000

lteration number

FIG. 9. Steady transcritical flow over a bump without a shock: Convergence history.

whereh" andh"~! are the local water depths at the current and previous time levels. T
convergence criterion for a steady solution is defineRas5 x 107°.

Transcritical flow without a shock. The physical domain was patrtitioned with 100 cells
andAx = 0.25m. A discharge per unitwidth gf = 1.53 n¥/s was imposed at the upstream
boundary and no boundary condition was needed at the downstream end of the chanr
steady-state solution was reached after 1500 iterations, as is clearly shown in the conver
history (Fig. 9). The surface profile is plotted in Fig. 10, which shows very good agreem
with the analytical solution. The computed discharge is also compared with the theore
one in Fig. 11, which proves that the method is conservative.

Transcritical flow with a shock. In this case, a discharge per unit widthgoé= 0.18 n¥/s
was imposed at the upstream boundary hnd 0.33 m was specified as the downstrean
boundary condition. To establish grid independence, three meshes of 100, 200,
400 nodes were used. The convergent solutions are plotted in Fig. 12. Differences ir

1.2 | b
1 Numerical solution  © 1
Analytical solution
Bed profile ----~-
0.8 E
E
= 06 b
04 r
02 [ ]
0 ¢ 1 J L N L ! ' L
0 3 6 9 12 15 18 21 24
x (m)

FIG. 10. Steady transcritical flow over a bump without a shock: Water surface elevation.
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FIG. 11. Steady transcritical flow over a bump without a shock: Comparison of discharge.

results with 100 and 200 cells clearly exist within the shock region, but the results ba
on 200 and 400 cells are almost the same. Hence results based on the mesh with 20(
were used for presentation here. A steady-state solution was reached after 2773 itera
Figure 13 shows the numerical results and the analytical solution, where very good ac
ment has been obtained. In Fig. 14, the Froude nuRber u/./gh is compared with the
theoretical values. Figures 15 and 16 show a comparison of the computed discharge
the theoretical results and the convergence history, respectively.

Subcritical flow. A mesh interval ofAx = 0.25 m was used in the computations. A
discharge per unit width off = 4.42 n?/s was imposed at the upstream boundary an
h = 2 m was specified as the downstream boundary condition. A steady-state solution
reached after 782 iterations. The numerical results are depicted in Figs. 17 and 18, w

again show excellent agreement with the analytical solution. The convergence histol
plotted in Fig. 19.

g 400
a SN 200
JE 100 o
/ i Bed profile ------
01 '_i' ‘| ]
O 1 1 If’ (|l ‘\ 1 1 1 1
0 3 6 9 12 15 18 21 24

x (m)

FIG. 12. Steady transcritical flow over a bump with a shock: Effect of mesh sizes.
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FIG. 13. Steady transcritical flow over a bump with a shock: Water surface elevation.

3 T T T ° T T T T T
25 1
2t Numerical solution o 5
Analytical solution
Bed Profile ------
@ 15 ¢ ]
1 - 4
05 b
O 1 L 1 1 1 1
0 3 6 15 18 21 24
FIG. 14. Steady transcritical flow over a bump with a shock: Froude number.
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FIG. 15. Steady transcritical flow over a bump with a shock: Comparison of discharge.
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FIG. 16. Steady transcritical flow over a bump with a shock: Convergence history.
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FIG. 17. Steady subcritical flow over a bump: Water surface elevation.
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FIG. 18. Steady subcritical flow over a bump: Comparison of discharge.
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FIG. 19. Steady subcritical flow over a bump: Convergence history.

6.4. A Quasi-stationary Case

A quasi-stationary test case used by LeVeque [6] was chosen to demonstrate the capse
of the proposed scheme for computations involving small perturbations of the water surf
The bed topography is

0.25[cogn(x — 0.5)/0.1) + 1] if [x—0.5 < 0.1
Zo(X) = { . (65)
0 otherwise

on0< x < 1with H(0) = 1 andg = 1. The initial conditions were the stationary solution
u=0and

HO)+¢ if0.1<x<0.2

n(x,0) = . (66)

H (0) otherwise

Theoretically, this disturbance splits into two waves, propagating left and right at the ct
acteristic speeds-,/gh. Many numerical methods have difficulty with the calculation:
involving such small perturbations of the water surface [6]. The solution atttim®.7 s
for e = 0.2 mis shown in Fig. 20. A magnified view of the solution and comparison wi
the solution of LeVeque [6] is shown in Fig. 21. A computation for a smaller perturbati
with ¢ = 0.01 m was also carried out. A comparison of the present solution with that
LeVeque [6] at time = 0.7 s is depicted in Fig. 22. It is clearly seen from these figure
that the new scheme can provide a solution of accuracy comparable to that obtained w
high-resolution Godunov-type method based on balancing the source terms and flux g
ents [6]. This suggests that the present scheme is able to handle small-perturbation prol
occurring in shallow-water flows.

6.5. A Hydraulic Jump in an Open Channel

This test case illustrates the application of the SGM to treat bed friction terms, wh
are important in simulating a hydraulic jump, which occurs when the flow changes fror
supercritical to a subcritical state in the direction of the flow. This is a stationary steady sh
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FIG. 20. Quasi-stationary case: Water surface elevation with small perturbatica 8t7 s.
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FIG. 21. Quasi-stationary case: Comparison of water surface elevatioas£.2 m.
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FIG. 22. Quasi-stationary case: Comparison of water surface elevatioas=.01 m.
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FIG. 23. Hydraulic jump: Comparison of water surface profiles £ 2.3).

wave observed in open channels and natural rivers. According to the theory or open-che
hydraulics [16], if the flow conditions remain unchanged, the location of a hydraulic jur
is largely determined in practice by the effect of bed roughness in the channel. This has
been demonstrated with a different numerical method [17]. Undoubtedly, the shallow-w
equations without bed shear stress source terms are not generally applicable to simu
a hydraulic jump in a practical flow channel.

The channel was 14 m long and 0.46 m wide, the same dimensions as those used
experiments [18]. There was no bed slope in the channel. The inflow Froude number
Fr = 2.3. The boundary conditions were: (1) inflow velocities- 1.92 m/s and) = 0; the
water depthh = 0.064 m; and (2) outflow deptih= 0.168 m. The boundary conditions and
initial data were taken from the corresponding experimental data. A uniform mesh with 4
7 cells and mesh intervalsx = 0.3 m andAy = 0.075 m, together with bed friction coef-
ficientC; = 0.00107, were used in the computations. A steady-state solution was reac
after 5865 iterations. Figure 23 shows the profile of the jump and a comparison with exg
mental data, numerical solutions obtained with different numerical methods [18, 19], at
computation made without the bed shear stress source terms, indicating that the locati
the hydraulic jump is incorrectly predicted. The convergence history is plotted in Fig. 2

107!

Relative error R

-8 L L L 1 L
10
0 2000 4000 6000 8000 10000

lteration number

FIG. 24. Hydraulic jump: Convergence historffr(= 2.3).
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FIG. 25. Wave basin for bore reflection.

6.6. Bore Reflection by a Sloped Wall

The final test case demonstrates the capability of the present method for solving ¢
shallow-water flow problem. A bore reflection at a sea wall is of practical interest. Differe
types of the bore reflections have been investigated numerically by Mingham and Cal
[2] for shallow-water flows. Here we consider a wave basin shown in Fig. 25 where
upper wall is vertical and the lower wall has a 5: 1 slope along its entire length. This v
illustrate at the same time both oblique bore reflection at the vertical wall and the sim
interaction occuring at the sloped wall. A bore wave travells from left to right along tl
basin and interacts with each side wall downstream. This problem is completely speci
by the bore Froude number and the downstream state of the bore. The bore Froude nu
and the initial condition on the right state of the bore are

Fo=2  ¢"=981nt/s, uR=uR=0. (67)

The initial condition on the left state of the bore can be determined from the shock conditi
as

R e

L / 2 R
¢ —%, uL=Fb(1—¢—)\/ﬁ. (68)
Theoretical analysis indicates that a single Mach reflection occurs under these conditi

The SGM is incorporated on a body-fitted cut cell mesh which can efficiently tre
irregular boundaries while retaining the simplicity of a Cartesian grid implementation.
detailed description of the cut cell method is given by Causbal. [4]. One-hundred
and twenty cells in flow direction and 108 cells in the transverse direction were used.
results at = 8 s are sufficient to illustrate the flow physics. Figures 26 and 27 show t
computed water surface looking toward the vertical and sloping walls, respectively. At
upper vertical wall, a well-developed triple point is visible with the formation of a Mac
stem normal to the wall. At the lower sloping wall, the reflection pattern is similar; howev
the reflected wave is weaker and the foot of the Mach stem appears to be oriented sli
further forward on the wall due to the effect of wall slope. Contours of the water surfz
elevation are plotted in Fig. 28.
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FIG. 26. Single Mach reflection: Water surface looking toward the upper (vertical) wall.

FIG. 27. Single Mach reflection: Water surface looking toward the lower (sloping) wall.

FIG. 28. Single Mach reflection: Line contours of water surface elevation.
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7. CONCLUSIONS

An accurate data reconstruction procedure for use in a high-resolution Godunov-t
finite volume method applied to the shallow-water equations with bed slope source te
has been presented. The scheme is as simple and efficient as a conventional piec
linear reconstruction method and enables the source terms to be discretized with a
tered discretization scheme. The proposed procedure can provide accurate values fi
conservative variables at cell interfaces and fully retains the conservative property of
parent finite-volume scheme. Using the new method, the fluxes at cell interfaces ca
accurately calculated with a Riemann solver with few errors being introduced by the
clusion of the bed slope terms. The scheme has been successfully applied to a select
steady and unsteady problems. These benchmark tests have shown that the scheme pi
accurate solutions in excellent agreement with the corresponding analytical solutions.
results also demonstrate that the scheme is accurate, simple, efficient, and robust. The
together with an appropriate Godunov-type finite-volume method is suitable for solv
practical shallow-water flow problems involving bed slope source terms.

ACKNOWLEDGMENTS

Funding from the Manchester Metropolitan University, U.K., is gratefully acknowledged.

REFERENCES

1. F. Alcrudo and P. Garcia-Navarro, A high-resolution Godunov-type scheme in finite volumes for the
shallow-water equationsnt. J. Numer. Methods Fluidkg, 489 (1993).
2. C.G.Minghamand D. M. Causon, High-resolution finite-volume method for shallow water Siddsgdraul.-
Eng. ASCEL24, 605 (1998).
3. K. Hu, C. G. Mingham, and D. M. Causon, A bore-capturing finite volume method for open-channel floy
Int. J. Numer. Methods Fluida8, 1241 (1998).
4. D. M. Causon, D. M. Ingram, C. G. Mingham, G. Yang, and R. V. Pearson, Calculation of shallow water flc
using a Cartesian cut cell approaéfdv. Water Resou@3, 545 (2000).
5. E.F. ToroRiemann Solvers and Numerical Methods for Fluid Dynarf8gsinger-Verlag, Berlin/Heidelberg,
1997).
6. R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: The q
steady wave-propagation algorithdh Comput. Physl46, 346 (1998).
7. A. Bermudez and M. E. &quez, Upwind methods for hyperbolic conservation laws with source term
Comput. Fluid23, 1049 (1994).
8. M. E. Vazquez-Cenafi, Improved treatment of source terms in upwind schemes for shallow water equatic
in channels with irregular geometry, Comput. Physl48 497 (1999).
9. R. J. LeVequeNumerical Methods for Conservation Lag&rkhauser-Verlag, Basel, 1990).
10. B.van Leer, On the relation between the upwind-differencing schemes of Godunov, Enguist-Osher and
SIAM J. Sci. Stat. Compu, 1 (1985).
11. A. Harten, P. Lax, and B. van Leer, On upstream differencing and Godunov-type schemes for hyper|
conservation lawsSIAM Rev25, 35 (1983).
12. E. F. Toro, Riemann problems and the WAF method for solving two-dimensional shallow water equati
Philos. Trans. R. Soc. London Ser338, 43 (1992).
13. L. Fraccarollo and E. F. Toro, Experimental and numerical assessment of the shallow water model for
dimensional dam-break type problemisHydraul. Res33, 843 (1995).
14. A.Bermudez, A. Dervieux, J. Desideri, and M. B2duez, Upwind schemes for the two-dimensional shallow
water equations with variable depth using unstructured me§tmsput. Methods Appl. Mech. Erth5 49
(1998).



SURFACE GRADIENT METHOD 25

15. N. Goutal and F. Maurel, ed®?roceedings of the 2nd Workshop on Dam-Break Wave Simuldtign
43/97/016/B (Epartement Laboratoire National d’'Hydraulique, Groupe Hydraulique Fluviale Eleetigit”
France, France, 1997).

16. V. T. Chow,Open-Channel HydraulicicGraw-Hill, New York, 1959).

17. J. G. Zhou and P. K. Stansby, 2D shallow water model for hydraulic jimhpl. Numer. Methods Fluida9,
375 (1999).

18. A. M. Gharangik and M. H. Chaudhry, Numerical simulation of hydraulic julnplydraul. Eng. ASCE17,
1195 (1991).

19. T. Molls and M. H. Chaudhry, Depth-averaged open-channel flow maddlydraul. Eng. ASCH21, 453
(1995).



	1. INTRODUCTION
	2. 2D SHALLOW-WATER EQUATIONS
	FIG. 1.

	3. THE SURFACE GRADIENT METHOD (SGM)
	4. IMPLEMENTATION WITHIN A GODUNOV-TYPE METHOD
	FIG. 2.

	5. CONSERVATIVE PROPERTY AND SOURCE TERMS
	6. VERIFICATION OF THE SCHEME
	TABLE I
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.
	FIG. 19.
	FIG. 20.
	FIG. 21.
	FIG. 22.
	FIG. 23.
	FIG. 24.
	FIG. 25.
	FIG. 26.
	FIG. 27.
	FIG. 28.

	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

